后给出了一个比较中肯的评价。
“很标准的证明方法。”
视线离开了手中的证明过程,陆舟看了眼日历,然后将证明过程还给了一脸忐忑的等待着结果的韩梦琪。
“令人惊讶,我原本以为你会用更多的时间去证明,没想到今年你就完成了。”
听到了这声夸奖,那压着的唇角忍不住翘起了一丝得意,韩梦琪轻轻哼了一声说道。
“……我可是很聪明的。”
陆舟淡淡笑了笑。
“关于这一点我会亲自确认。”
看着准备提问的陆舟,韩梦琪打起了一百二十分的精神,严阵以待地说道。
“您问吧!”
“第三页第16行。”
刷刷地翻纸声响起,韩梦琪很快找到了那行的位置。
端起桌上微凉的咖啡杯轻轻抿了一口,陆舟停顿了片刻,继续说道“详细说明下如何从式2推出ζ2n为超越数。”
听到这个问题,韩梦琪的心中暗暗松了口气。
在来之前她都已经做好了在被陆舟刁难一番的准备,没想到陆舟并没有拿那种特别难的问题来刁难她,只是问了个很基本的。
深呼吸了一口气,她停顿了片刻继续说道。
“……根据欧拉公式对式2进行变换可得,对任意整数n>1,都有ζ2nbnπ2n。”
“其中ulli数。显而易见ζ2是π2乘上一个特别的有理数,ζ4是π4乘上一特别的有理数……因此我们完全清楚了ζ2,ζ4……都是有理数。而因为π是超越数,这些函数值当然也是超越数。”
听完了韩梦琪的表述,陆舟赞许地点了点头。
“不错。”
“但也别急着骄傲,这个问题只是考验你这篇论文是不是你自己完成的。接下来的问题,才是真正地挑战。”
看着严阵以待的韩梦琪,陆舟放下了手中的咖啡杯,继续问道。
“既然你已经证明了ζ(2n)是超越数,那么我想问的是,ζ(3)呢?”
这么简单的问题……
韩梦琪得意地翘起了下巴。
然而就在她正准备回答这个问题的时候,却是愣住了。
ζ(3)!
ζ(3)……
咦咦咦?
这玩意儿到底是什么?!
看着一脸懵逼的韩梦琪,陆舟笑了笑问道。
“回答不上来了?ζ(3)看起来总比ζ(2n)简单一些吧?后者括号里还带着个未知数呢。”
“唔……”腮帮子鼓了起来,咬着下嘴唇的韩梦琪苦思冥想着,却是一句话也说不出来。
过了好一会儿,才用试探的口吻问道。
“也是……超越数?”
陆舟笑着问道“哦?为什么?”
韩梦琪老实回答“……猜的。”
看着小姑娘老实地低着头的样子,陆舟笑了笑,停顿了片刻继续说道。
“你不知道并不奇怪,因为写出欧拉公式的欧拉也不知道。一直到1978年法国数学家ra′ery才证明出ζ3不是有理数,而关于ζ5是不是有理数,我们现在都还不知道。”
一听陆舟问自己的问题根本没有答案,韩梦琪顿时气鼓鼓地说道。
“什么嘛……拿这种没有答案的问题来……来欺负我。”
“有答案的哦,”看着韩梦琪,陆舟笑了笑之后,换上了认真的语气说道,“任何数学问题都是有答案的,只是我们还不知道而已。而当你从硕士成为博士之后,所面对的挑战也正在这里,你得学会自己去寻找一条通往迷宫出口的道路,提出idea,然后将它实现。”